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Explaining fast magnetic reconnection in electrically conducting plasmas has been a
theoretical challenge in plasma physics since its first description by Eugene N. Parker. In
the recent years the observed reconnection rate has been shown by numerical simulations
to be explained by the plasmoid instability that appears in highly conductive plasmas.
In this work we show that the plasmoid instability is very sensitive to the numerical
resolution used. It is shown that well resolved runs display no plasmoid instability even
at Lundquist number as large as 5 · 105 achieved at resolutions of 32 7682 grid points.
On the contrary in simulations that are under-resolved below a threshold, the plasmoid
instability manifests itself with the formation of larger plasmoids the larger the under-
resolving is. The present results thus question the description of the plasmoid instability
as a mechanism for fast magnetic reconnection.

1. Introduction

Magnetic reconnection refers to the sudden change of magnetic topology due to Ohmic
dissipation or other micro-scale plasma processes. In astrophysics it is met in solar flares,
coronal mass ejections, the solar wind and the Earth’s magnetosphere to mention a few
examples. In laboratory scales it is observed in tokamak discharges, and in reversed
field pinch devices. It is responsible for the fast acceleration of charged particles and
plasma heating Yamada et al. (2010). It was noted early on Giovanelli (1946) that
the rate of reconnection observed in astrophysical plasmas was much faster than the
relevant Ohmic time scale. The model of Sweet and Parker (Parker 1957; Sweet 1958)
improved on this estimate by introducing what is now known as the Sweet-Parker model
where the reconnection timescale is accelerated by a factor of

√
SL where SL stands

for the Lundquist number defined as SL = VAL/η where VA is the Alfven speed,
L the typical structure size and η the magnetic diffusivity. Although the Lundquist
number in astrophysical plasmas is large, the improvement of the Sweet-Parker model
still lacks orders of magnitude compared to observations. Different, explanations have
been put forward to produce faster reconnection rates than the Sweet-Parker model
including different geometry of the layer (Petschek 1964), Hall effect (Morales et al.
2005; Wang et al. 2000), Electron pressure (Egedal et al. 2013; Wang et al. 2000),
Electron inertia (Andrés et al. 2014) and turbulence (Lazarian et al. 2015, 2020). However
even without adding additional physics it has been argued that a two dimensional
magnetohydrodynamic (2D-MHD) model as the one proposed by Sweet-Parker can result
in fast (ie magnetic diffusivity independent) reconnection rate if the Lundquist number
is large enough so that the plasmoid instability develops (Shibata & Tanuma 2001). The
plasmoid instability appears for SL ≳ 104 (Loureiro et al. 2007; Samtaney et al. 2009)
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and leads to the formation of magnetic islands along the current sheet that enhance
the reconnection rate (Lapenta 2008; Bhattacharjee et al. 2009; Samtaney et al. 2009;
Daughton et al. 2009; Cassak et al. 2009; Huang & Bhattacharjee 2010, 2012; Loureiro
et al. 2013; Huang & Bhattacharjee 2013; Loureiro et al. 2012; Uzdensky et al. 2010).
These results were based on extended numerical simulations using a variety of codes
including particle in cell methods, finite volume and pseudospectral methods. We argue
however in this work that reconnection is particularly sensitive to the numerical resolution
and some of these results would need to be reexamined.

2. Numerical model

In this work we revisit the reconnection problem in 2D-MHD paying particular empha-
sis on numerical convergence. We consider the 2D-MHD equations in a double periodic
square box of size L = 2π. In terms of vorticity and the magnetic vector potential they
read:

∂tω + u · ∇ω = b · ∇j + ν∇2ω (2.1)

∂ta+ u · ∇a = η∇2a (2.2)

where ω = ez ·∇×u is the vorticity with ez the direction perpendicular to the examined
plane and u the velocity field. The magnetic field is given by b = ∇× (eza) where eza is
the magnetic vector potential. The current along ez is given by j = ez · ∇ × b = −∇2a.
The viscosity ν is set equal to the magnetic diffusivity η for all our simulations. As
initial conditions we consider the Orsang-Tang vortex (Orszag & Tang 1979) plus a
small perturbation:

a(t = 0,x) = A0[− cos(x) + cos(2y)/2] + ap (2.3)

while the velocity field is defined by its stream function ψ (such that ux = ∂yΨ and
uy = −∂xΨ) by

Ψ(t = 0,x) = Ψ0 sin(x) sin(y) + ψp. (2.4)

The amplitudes A0 and Ψ0 are such that the initial magnetic energy density is 1
2 ⟨|b|2⟩ = 1

2
and the kinetic energy is 1

2 ⟨|u|2⟩ = 1
8 . The perturbations ap, ψp are chosen to include

Fourier modes with wavenumber |k| < 16 with random phases and their amplitude are
such that their energy corresponds to 0.25% of the total energy. They provide a seed for
linear instabilities to develop that otherwise would depend on the the round-off error. A
visualisation of the initial conditions in terms of the current square is shown in the left
panel of figure 1.
The equations were solved using the ghost pseudospectral code (Mininni et al. 2011)

with a 4th order Runge-Kutta scheme for the time advancement, the 2/3 rule for de-
aliasing and using a uniform grid of N grid points in each direction. Many different
numerical simulations were carried out varying the resolution and the value of η = ν.
The parameters of all our runs are given in the table 1.
The evolution of the system leads to the formation of a current sheet aligned along the

x-axis centered at x = 0. The intensity of the current sheet measured by the mean current
density squared ⟨j2⟩ increases rapidly and peaks at a time around t ≃ 1.9 after which it
decays. In what follows all the studies are performed at the peak of ⟨j2⟩. At this time we
define the Lundquist number as SL ≡ Bmax/(ηk1) where k1 = 1 is the smallest non-zero
wavenumber. To calculate Bmax for each y we calculate the mean magnetic field bx(y)
along the x direction in the range x ∈ [−π/8, π/8] (shown by the horizontal green line
in figure 1). Bmax is then defined as the first local maximum of bx(y) as one moves away
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Figure 1: Visualisation of the current density of the initial conditions and the resulting
current layer in the entire domain. Red lines, indicate the magnetic field lines while blue
lines indicate the velocity field. The blue box marks the zoomed in region that is shown
in the subsequent figures.

N η SL N η SL N η SL

1024 0.50E-01 0.19E+02 2048 0.20E-02 0.12E+04 4096 0.15E-04 0.14E+06
1024 0.20E-01 0.70E+02 2048 0.10E-02 0.26E+04 4096 0.70E-05 0.35E+06
1024 0.10E-01 0.18E+03 2048 0.50E-03 0.54E+04 4096 0.50E-05 0.46E+06
1024 0.50E-02 0.41E+03 2048 0.20E-03 0.15E+05 4096 0.20E-05 0.91E+06
1024 0.20E-02 0.12E+04 2048 0.10E-03 0.30E+05 4096 0.10E-05 0.18E+07
1024 0.10E-02 0.26E+04 2048 0.50E-04 0.61E+05 8192 0.50E-04 0.62E+05
1024 0.50E-03 0.54E+04 2048 0.20E-04 0.13E+06 8192 0.15E-04 0.18E+06
1024 0.20E-03 0.15E+05 2048 0.15E-04 0.17E+06 8192 0.10E-04 0.28E+06
1024 0.10E-03 0.30E+05 2048 0.50E-05 0.24E+06 8192 0.50E-05 0.51E+06
1024 0.50E-04 0.47E+05 2048 0.30E-05 0.39E+06 8192 0.25E-05 0.95E+06
1024 0.30E-04 0.59E+05 2048 0.20E-05 0.58E+06 8192 0.20E-05 0.12E+07
1024 0.20E-04 0.87E+05 2048 0.15E-05 0.75E+06 8192 0.10E-05 0.23E+07
1024 0.15E-04 0.10E+06 2048 0.10E-05 0.14E+07 16384 0.10E-04 0.28E+06
1024 0.10E-04 0.14E+06 4096 0.20E-03 0.15E+05 16384 0.50E-05 0.39E+06
1024 0.70E-05 0.16E+06 4096 0.10E-03 0.30E+05 16384 0.25E-05 0.86E+06
1024 0.50E-05 0.23E+06 4096 0.50E-04 0.62E+05 32768 0.50E-05 0.54E+06
1024 0.15E-05 0.61E+06 4096 0.30E-04 0.11E+06

Table 1: Simulation parameters N, η, SL. Boldface N is used for well-resolved and
marginally well resolved runs.

from the current sheet at y = 0. The non-dimensional reconnection rate is defined here
as RR = uin/Bmax where uin is again calculated by finding the mean inwards velocity
−uy(y) over the same segment as for bx(y) and then uin is defined as the first maximum
of −uy(y) as one moves away from the current layer. Note that this average is crucial in
the presence of plasmoids that make local vales of uy and bx fluctuate strongly.
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Figure 2: Squared current density for well resolved runs (zoomed in the current layer)
for different values of η taken from the marginally well resolved runs. The visualised do
main corresponds to the blue box shown in figure 1.

3. Results

Exact solutions of reconnection layers describing the formation of the reconnection are
not feasible and one needs to rely on numerical solutions. For the validity of a numerical
method to be verified one needs to demonstrate that for a given set of physical parameters
there exists a resolution Nc such that all larger resolutions N > Nc give the same
result, up to a small error that can be bounded by a decreasing function of N . Such
a procedure proves that the the numerical solution does not depend on the resolution
and approaches the exact solution of the problem. Different numerical methods have
different convergence rates. Finite difference and finite volume codes lead to a power-law
convergence implying that the error made decreases as a negative power-law as N > Nc

is increased, while pseudo-spectral and finite element codes result in an exponential
convergence. This exponential convergence can be realised by considering the energy
spectrum of the involved fields here defined as Eb(k) =

1
2

∑
k<|q|⩽k+1 |b̃q|2 where b̃q is

the Fourier transform of the magnetic field b. Similarly, the squared current spectrum is
defined as EJ(k) = k2Eb(k). For a smooth field the energy and current spectrum display
an exponential decrease with the wavenumber at large k. Further increase of resolution
thus adds exponentially small corrections. In the present study we have considered that
a simulation is well resolved if the peak of the squared current spectrum defined as
EJ(k) = k2Eb(k) is at least ten times larger than its value at k = kmax = N/3 the
maximum allowed wavenumber ie maxk{EJ(k)} ⩾ 10EJ(kmax). This implies that most
of the Ohmic dissipation is correctly captured. The consequences of violating this criterion
are severe.
In figure 2 we show visualisations of the squared current density (zoomed in the current

layer) obtained from well resolved runs for different values of η. None of these runs
displayed visible plasmoids even though values of SL = 5.4 · 105 are reached. We note
that that the current layer is not straight. Instabilities have developed that have given a
bent shape of the current layer but have not led to plasmoid formation.
In figure 3 we plot the squared current density again for the smallest value of η

examined for different resolutions N . From these runs only the last one for N = 32768
is well resolved based on the criterion mentioned before. It is striking that all under-
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Figure 3: Squared current density for the smallest value of η examined (zoomed in the
current layer ) for different resolutions N .
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Figure 4: Squared current density spectra corresponding to the runs shown in figures 2
(left) and 3 (right).
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resolved runs displayed plasmoids. In fact the worst the under-resolving the largest the
plasmoids appear. This phenomenon is also present at smaller values of η examined:
when the well-resolved criterion is violated plasmoids are present. Table 1 shows the
parameters used for all runs (not just the ones shown in figures 2 and 3) indicating the
value of resolution N required for each value of η so that the simulation is well resolved.
All resolutions smaller than the marked value displayed plasmoids. Similar features due
to under-resolving have also been observed in Burger’s turbulence and the Navier-stokes
where they have been studied extensively (Ray et al. 2011; Murugan & Ray 2023).
Further insight can be gained by looking at the energy spectra. The left panel of figure

4 shows the the current density spectra for the runs corresponding to figure 2, while the
right panel of the same figure, shows the spectra for the runs corresponding to figure 3.
In the left panel all runs are marginally well resolved. As resolution is increased and η
is decreased EJ(k) progresses to larger wavenumbers forming a k0 power-law range that
reflects the approximate discontinuity of the magnetic field in the current sheet. This
power-law range is followed by an increase that could be attributed to either bottleneck
(Falkovich 1994; Donzis & Sreenivasan 2010; Agrawal et al. 2020) or a transition to two
dimensional turbulence as a result of the instabilities that have developed with E(k) ∝
k−5/3. At larger wavenumbers the spectrum shows a steep exponential decrease. Finally
at the highest wavenumbers near kmax there is a sharp increase. This is a numerical
artifact due to the sharp spectral truncation that leads to a partial thermalisation of the
high wavenumbers (Cichowlas et al. 2005; Alexakis & Brachet 2020). Further increasing
the resolution for a given value of η has little effect as is demonstrated in the inset of
the right panel where the well-resolved run for N = 1024 (plotted in the left panel) is
repeated at larger resolutions N = 2048 and N = 4096.
The behavior described above changes when the resolution criterion is not satisfied. In

the right panel of fig. 4, where only the simulation with the largest N is well-resolved,
clear under-resolving features can be testified. As the resolution is decreased the amount
of energy at the largest wavenumbers increases changing the shape of the spectrum. It
is worth noting that the integral of EJ(k) is proportional to the Ohmic dissipation and
even at the second to largest resolution N = 16 384 the Ohmic dissipation due to the
wavenumbers at kmax is comparable to the dissipation due to the peak of EJ(k) around
k = 500. It is thus not surprising that violating the well resolved criterion mention before
can lead to erroneous estimates of the reconnection rate and appearance of plasmoids.
This is clearly demonstrated in figure 5 where the reconnection rate RR is plotted as

a function of SL for all our simulations. Filled symbols correspond to well resolved runs
while open symbols correspond to under-resolved runs. All well resolved runs display the

Sweet-Parker scaling RR ∝ S
−1/2
L even up to SL = 5 · 105 that corresponds to the run

at N = 32768. When the runs are under-resolved however deviations from this scaling
appear, leading to a SL−independent scaling. This however is a numerical artifact. The
reason can be linked to the thickness of the current sheet. In the right panel we plot
the thickness of the current layer defined as δ ≡ Bmax/jmax normalised by the grid
size ∆x = 2π/N for all runs as well. Well resolved runs follow again the Sweet-Parker

prediction δ ∝ S
−1/2
L but this scaling obviously ceases to be true when the width of the

current sheet is comparable to the grid size.

4. Conclusions

Reconnection is a topological change of field lines that can only be broken by micro-
scale processes. Under-resolving can be one of these processes although not a physical
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one. It is hard to imagine that continuity of field lines can be preserved when the finiteness
of the grid size is apparent. Thus care needs to be taken when topological changes are
studied with numerical codes. The present results indicate that some of the conclusions
for magnetic reconnection due to plasmoids in 2D MHD need to be re-evaluated. We
note however that other mechanisms that can lead to a change of field line topology
as the ones mentioned in the introduction can provide seed to lead to the formation of
plasmoids.

This work was granted access to the HPC resources of GENCI-TGCC & GENCI-
CINES (Project No. A0130506421, A0150506421 ). This work has also been supported
by the Agence Nationale de la Recherche (ANR project DYSTURB No. ANR-17-CE30-
0004 and LASCATURB No. ANR-23-CE30).
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